Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 137, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.137
(Mi sigma1673)
 

This article is cited in 6 scientific papers (total in 6 papers)

Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation

Jun Jianga, Satyendra Kumar Mishrab, Yunhe Shenga

a Department of Mathematics, Jilin University, Changchun, Jilin Province, 130012, China
b Statistics and Mathematics Unit, Indian Statistical Institute Bangalore, India
Full-text PDF (443 kB) Citations (6)
References:
Abstract: In this paper, we introduce the notion of a (regular) Hom-Lie group. We associate a Hom-Lie algebra to a Hom-Lie group and show that every regular Hom-Lie algebra is integrable. Then, we define a Hom-exponential ($\mathsf{Hexp}$) map from the Hom-Lie algebra of a Hom-Lie group to the Hom-Lie group and discuss the universality of this $\mathsf{Hexp}$ map. We also describe a Hom-Lie group action on a smooth manifold. Subsequently, we give the notion of an adjoint representation of a Hom-Lie group on its Hom-Lie algebra. At last, we integrate the Hom-Lie algebra $(\mathfrak{gl}(V),[\cdot,\cdot],\mathsf{Ad})$, and the derivation Hom-Lie algebra of a Hom-Lie algebra.
Keywords: Hom-Lie algebra, Hom-Lie group, derivation, automorphism, integration.
Funding agency Grant number
National Natural Science Foundation of China 11922110
Research supported by NSFC (11922110).
Received: June 1, 2020; in final form December 10, 2020; Published online December 17, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jun Jiang, Satyendra Kumar Mishra, Yunhe Sheng, “Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation”, SIGMA, 16 (2020), 137, 22 pp.
Citation in format AMSBIB
\Bibitem{JiaMisShe20}
\by Jun~Jiang, Satyendra~Kumar~Mishra, Yunhe~Sheng
\paper Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation
\jour SIGMA
\yr 2020
\vol 16
\papernumber 137
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma1673}
\crossref{https://doi.org/10.3842/SIGMA.2020.137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000601245100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098493809}
Linking options:
  • https://www.mathnet.ru/eng/sigma1673
  • https://www.mathnet.ru/eng/sigma/v16/p137
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024