Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 041, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.041
(Mi sigma167)
 

This article is cited in 7 scientific papers (total in 7 papers)

Phase Space of Rolling Solutions of the Tippe Top

S. Torkel Glada, Daniel Peterssona, Stefan Rauch-Wojciechowskib

a Dept. of Electrical Engineering, Linköpings Universitet SE-581 83 Linköping, Sweden
b Department of Mathematics, Linköpings Universitet, SE-581 83 Linköping, Sweden
Full-text PDF (334 kB) Citations (7)
References:
Abstract: Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and quadratic in momenta. In the Euler angle variables $(\theta,\varphi,\psi)$ these integrals give separation equations that have the same structure as the equations of the Lagrange top. It makes it possible to describe the whole space of solutions by representing them in the space of parameters $(D,\lambda,E)$ being constant values of the integrals of motion.
Keywords: nonholonomic dynamics; rigid body; rolling sphere; tippe top; integrals of motion.
Received: September 15, 2006; in final form February 5, 2007; Published online March 9, 2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Torkel Glad, Daniel Petersson, Stefan Rauch-Wojciechowski, “Phase Space of Rolling Solutions of the Tippe Top”, SIGMA, 3 (2007), 041, 14 pp.
Citation in format AMSBIB
\Bibitem{GlaPetRau07}
\by S.~Torkel Glad, Daniel Petersson, Stefan Rauch-Wojciechowski
\paper Phase Space of Rolling Solutions of the Tippe Top
\jour SIGMA
\yr 2007
\vol 3
\papernumber 041
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma167}
\crossref{https://doi.org/10.3842/SIGMA.2007.041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299842}
\zmath{https://zbmath.org/?q=an:1131.70003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200041}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234797}
Linking options:
  • https://www.mathnet.ru/eng/sigma167
  • https://www.mathnet.ru/eng/sigma/v3/p41
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:400
    Full-text PDF :53
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024