Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 132, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.132
(Mi sigma1669)
 

This article is cited in 1 scientific paper (total in 1 paper)

Perfect Integrability and Gaudin Models

Kang Lu

Department of Mathematics, University of Denver, 2390 S. York St., Denver, CO 80210, USA
Full-text PDF (395 kB) Citations (1)
References:
Abstract: We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with periodic and regular quasi-periodic boundary conditions.
Keywords: Gaudin model, Bethe ansatz, Frobenius algebra.
Funding agency Grant number
Simons Foundation 353831
This work was partially supported by a grant from the Simons Foundation #353831.
Received: August 26, 2020; in final form December 2, 2020; Published online December 10, 2020
Bibliographic databases:
Document Type: Article
MSC: 82B23, 17B80
Language: English
Citation: Kang Lu, “Perfect Integrability and Gaudin Models”, SIGMA, 16 (2020), 132, 10 pp.
Citation in format AMSBIB
\Bibitem{Lu20}
\by Kang~Lu
\paper Perfect Integrability and Gaudin Models
\jour SIGMA
\yr 2020
\vol 16
\papernumber 132
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma1669}
\crossref{https://doi.org/10.3842/SIGMA.2020.132}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000601242400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098755252}
Linking options:
  • https://www.mathnet.ru/eng/sigma1669
  • https://www.mathnet.ru/eng/sigma/v16/p132
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:65
    Full-text PDF :24
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024