Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 129, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.129
(Mi sigma1666)
 

This article is cited in 3 scientific papers (total in 3 papers)

Positive Scalar Curvature due to the Cokernel of the Classifying Map

Thomas Schicka, Vito Felice Zenobib

a Mathematisches Institut, Universität Göttingen, Germany
b Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 5 - 00185 - Roma, Italy
Full-text PDF (422 kB) Citations (3)
References:
Abstract: This paper contributes to the classification of positive scalar curvature metrics up to bordism and up to concordance. Let $M$ be a closed spin manifold of dimension $\ge 5$ which admits a metric with positive scalar curvature. We give lower bounds on the rank of the group of psc metrics over $M$ up to bordism in terms of the corank of the canonical map $KO_*(M)\to KO_*(B\pi_1(M))$, provided the rational analytic Novikov conjecture is true for $\pi_1(M)$.
Keywords: positive scalar curvature, bordism, concordance, Stolz exact sequence, analytic surgery exact sequence, secondary index theory, higher index theory, $K$-theory.
Funding agency Grant number
Deutsche Forschungsgemeinschaft
The authors thank the German Science Foundation and its priority program “Geometry at Infinity” for partial support.
Received: July 13, 2020; in final form December 4, 2020; Published online December 9, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Thomas Schick, Vito Felice Zenobi, “Positive Scalar Curvature due to the Cokernel of the Classifying Map”, SIGMA, 16 (2020), 129, 12 pp.
Citation in format AMSBIB
\Bibitem{SchZen20}
\by Thomas~Schick, Vito Felice~Zenobi
\paper Positive Scalar Curvature due to the Cokernel of the Classifying Map
\jour SIGMA
\yr 2020
\vol 16
\papernumber 129
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma1666}
\crossref{https://doi.org/10.3842/SIGMA.2020.129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000597389500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098753713}
Linking options:
  • https://www.mathnet.ru/eng/sigma1666
  • https://www.mathnet.ru/eng/sigma/v16/p129
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :23
    References:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024