Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 125, 42 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.125
(Mi sigma1662)
 

This article is cited in 1 scientific paper (total in 1 paper)

A Map Between Moduli Spaces of Connections

Frank Loraya, Valente Ramírezb

a Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
b University of Twente, Department of Applied Mathematics, 7500 AE Enschede, The Netherlands
Full-text PDF (771 kB) Citations (1)
References:
Abstract: We are interested in studying moduli spaces of rank $2$ logarithmic connections on elliptic curves having two poles. To do so, we investigate certain logarithmic rank $2$ connections defined on the Riemann sphere and a transformation rule to lift such connections to an elliptic curve. The transformation is as follows: given an elliptic curve $C$ with elliptic quotient $\pi\colon C\to\mathbb{P}^1$, and the logarithmic connection $(E,\nabla)$ on $\mathbb{P}^1$, we may pullback the connection to the elliptic curve to obtain a new connection $(\pi^*E, \pi^*\nabla)$ on $C$. After suitable birational modifications we bring the connection to a particular normal form. The whole transformation is equivariant with respect to bundle automorphisms and therefore defines a map between the corresponding moduli spaces of connections. The aim of this paper is to describe the moduli spaces involved and compute explicit expressions for the above map in the case where the target space is the moduli space of rank $2$ logarithmic connections on an elliptic curve $C$ with two simple poles and trivial determinant.
Keywords: moduli spaces, parabolic connection, logarithmic connection, parabolic vector bundle, parabolic Higgs bundle, elliptic curve.
Funding agency Grant number
Agence Nationale de la Recherche ANR-16-CE40-000
ANR11-LABX-0020-01
Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica IN-106217
CONACYT - Consejo Nacional de Ciencia y Tecnología 219722
Centre National de la Recherche Scientifique
European Union's Seventh Framework Programme
F.L. acknowledges the support of CNRS and the project Foliage ANR-16-CE40-0008. V.R. was supported by the grants PAPIIT IN-106217, CONACYT 219722, and the PRESTIGE postdoc program (coordinated by Campus France and co-financed under the Marie Curie Actions - COFUND of the FP7). He also acknowledges the support of the Centre Henri Lebesgue ANR11-LABX-0020-01.
Received: December 17, 2019; in final form November 24, 2020; Published online December 2, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Frank Loray, Valente Ramírez, “A Map Between Moduli Spaces of Connections”, SIGMA, 16 (2020), 125, 42 pp.
Citation in format AMSBIB
\Bibitem{LorRam20}
\by Frank~Loray, Valente~Ram{\'\i}rez
\paper A Map Between Moduli Spaces of Connections
\jour SIGMA
\yr 2020
\vol 16
\papernumber 125
\totalpages 42
\mathnet{http://mi.mathnet.ru/sigma1662}
\crossref{https://doi.org/10.3842/SIGMA.2020.125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000597387000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098237995}
Linking options:
  • https://www.mathnet.ru/eng/sigma1662
  • https://www.mathnet.ru/eng/sigma/v16/p125
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024