Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 117, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.117
(Mi sigma1655)
 

A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces

Victor S. Barbosaa, Valdir A. Menegattob

a Centro Tecnológico de Joinville-UFSC, Rua Dona Francisca, 8300. Bloco U, 89219-600 Joinville SC, Brazil
b Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos - SP, Brazil
References:
Abstract: This paper is concerned with the construction of positive definite functions on a cartesian product of quasi-metric spaces using generalized Stieltjes and complete Bernstein functions. The results we prove are aligned with a well-established method of T. Gneiting to construct space-time positive definite functions and its many extensions. Necessary and sufficient conditions for the strict positive definiteness of the models are provided when the spaces are metric.
Keywords: positive definite functions, generalized Stieltjes functions, Bernstein functions, Gneiting's model, products of metric spaces.
Received: June 23, 2020; in final form November 7, 2020; Published online November 19, 2020
Bibliographic databases:
Document Type: Article
MSC: 42A82, 43A35
Language: English
Citation: Victor S. Barbosa, Valdir A. Menegatto, “A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces”, SIGMA, 16 (2020), 117, 15 pp.
Citation in format AMSBIB
\Bibitem{BarMen20}
\by Victor~S.~Barbosa, Valdir~A.~Menegatto
\paper A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces
\jour SIGMA
\yr 2020
\vol 16
\papernumber 117
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma1655}
\crossref{https://doi.org/10.3842/SIGMA.2020.117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000591729000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098236277}
Linking options:
  • https://www.mathnet.ru/eng/sigma1655
  • https://www.mathnet.ru/eng/sigma/v16/p117
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025