Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 111, 133 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.111
(Mi sigma1648)
 

This article is cited in 3 scientific papers (total in 3 papers)

Elliptic Double Affine Hecke Algebras

Eric M. Rains

Department of Mathematics, California Institute of Technology, USA
References:
Abstract: We give a construction of an affine Hecke algebra associated to any Coxeter group acting on an abelian variety by reflections; in the case of an affine Weyl group, the result is an elliptic analogue of the usual double affine Hecke algebra. As an application, we use a variant of the $\tilde{C}_n$ version of the construction to construct a flat noncommutative deformation of the $n$th symmetric power of any rational surface with a smooth anticanonical curve, and give a further construction which conjecturally is a corresponding deformation of the Hilbert scheme of points.
Keywords: elliptic curves, Hecke algebras, noncommutative deformations.
Funding agency Grant number
National Science Foundation DMS-1001645
DMS-1500806
The author's work presented here was supported in part by grants from the National Science Foundation, DMS-1001645 and DMS-1500806.
Received: December 19, 2019; in final form October 16, 2020; Published online November 5, 2020
Bibliographic databases:
Document Type: Article
MSC: 33D80, 39A70, 14A22
Language: English
Citation: Eric M. Rains, “Elliptic Double Affine Hecke Algebras”, SIGMA, 16 (2020), 111, 133 pp.
Citation in format AMSBIB
\Bibitem{Rai20}
\by Eric~M.~Rains
\paper Elliptic Double Affine Hecke Algebras
\jour SIGMA
\yr 2020
\vol 16
\papernumber 111
\totalpages 133
\mathnet{http://mi.mathnet.ru/sigma1648}
\crossref{https://doi.org/10.3842/SIGMA.2020.111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000587745500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095715816}
Linking options:
  • https://www.mathnet.ru/eng/sigma1648
  • https://www.mathnet.ru/eng/sigma/v16/p111
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025