Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 109, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.109
(Mi sigma1646)
 

Real Part of Twisted-by-Grading Spectral Triples

Manuele Filaciab, Pierre Martinettiac

a INFN sezione di Genova, Italy
b Università di Genova – Dipartimento di Fisica, Italy
c Università di Genova – Dipartimento di Matematica, Italy
References:
Abstract: After a brief review on the applications of twisted spectral triples to physics, we adapt to the twisted case the notion of real part of a spectral triple. In particular, when one twists a usual spectral triple by its grading, we show that – depending on the $KO$ dimension – the real part is either twisted as well, or is the intersection of the initial algebra with its opposite. We illustrate this result with the spectral triple of the standard model.
Keywords: noncommutative geometry, twisted spectral triple, standard model.
Received: September 3, 2020; in final form October 23, 2020; Published online October 29, 2020
Bibliographic databases:
Document Type: Article
MSC: 58B34, 46L87, 81T75
Language: English
Citation: Manuele Filaci, Pierre Martinetti, “Real Part of Twisted-by-Grading Spectral Triples”, SIGMA, 16 (2020), 109, 10 pp.
Citation in format AMSBIB
\Bibitem{FilMar20}
\by Manuele~Filaci, Pierre~Martinetti
\paper Real Part of Twisted-by-Grading Spectral Triples
\jour SIGMA
\yr 2020
\vol 16
\papernumber 109
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma1646}
\crossref{https://doi.org/10.3842/SIGMA.2020.109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000587744800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095715519}
Linking options:
  • https://www.mathnet.ru/eng/sigma1646
  • https://www.mathnet.ru/eng/sigma/v16/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025