Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 038, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.038
(Mi sigma164)
 

Towards Finite-Gap Integration of the Inozemtsev Model

Kouichi Takemura

Department of Mathematical Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
References:
Abstract: The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero–Moser–Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
Keywords: finite-gap integration; Inozemtsev model; Heun's equation; Darboux transformation.
Received: October 31, 2006; in final form February 7, 2007; Published online March 2, 2007
Bibliographic databases:
Document Type: Article
MSC: 81R12; 33E10; 34M35
Language: English
Citation: Kouichi Takemura, “Towards Finite-Gap Integration of the Inozemtsev Model”, SIGMA, 3 (2007), 038, 17 pp.
Citation in format AMSBIB
\Bibitem{Tak07}
\by Kouichi Takemura
\paper Towards Finite-Gap Integration of the Inozemtsev Model
\jour SIGMA
\yr 2007
\vol 3
\papernumber 038
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma164}
\crossref{https://doi.org/10.3842/SIGMA.2007.038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299839}
\zmath{https://zbmath.org/?q=an:1133.81032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200038}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236334}
Linking options:
  • https://www.mathnet.ru/eng/sigma164
  • https://www.mathnet.ru/eng/sigma/v3/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :38
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024