Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 098, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.098
(Mi sigma1635)
 

Twisted Hochschild Homology of Quantum Flag Manifolds and Kähler Forms

Marco Matassa

OsloMet - Oslo Metropolitan University, Oslo, Norway
References:
Abstract: We study the twisted Hochschild homology of quantum flag manifolds, the twist being the modular automorphism of the Haar state. We prove that every quantum flag manifold admits a non-trivial class in degree two, with an explicit representative defined in terms of a certain projection. The corresponding classical two-form, via the Hochschild–Kostant–Rosenberg theorem, is identified with a Kähler form on the flag manifold.
Keywords: quantum flag manifolds, twisted Hochschild homology, Kähler forms.
Received: March 31, 2020; in final form September 25, 2020; Published online October 3, 2020
Bibliographic databases:
Document Type: Article
MSC: 17B37, 20G42, 16E40
Language: English
Citation: Marco Matassa, “Twisted Hochschild Homology of Quantum Flag Manifolds and Kähler Forms”, SIGMA, 16 (2020), 098, 18 pp.
Citation in format AMSBIB
\Bibitem{Mat20}
\by Marco~Matassa
\paper Twisted Hochschild Homology of~Quantum Flag Manifolds and K\"ahler Forms
\jour SIGMA
\yr 2020
\vol 16
\papernumber 098
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1635}
\crossref{https://doi.org/10.3842/SIGMA.2020.098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000575385500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092346613}
Linking options:
  • https://www.mathnet.ru/eng/sigma1635
  • https://www.mathnet.ru/eng/sigma/v16/p98
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024