Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 097, 57 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.097
(Mi sigma1634)
 

Differential Calculus of Hochschild Pairs for Infinity-Categories

Isamu Iwanari

Mathematical Institute, Tohoku University, 6-3 Aramakiaza, Sendai, Miyagi, 980-8578, Japan
References:
Abstract: In this paper, we provide a conceptual new construction of the algebraic structure on the pair of the Hochschild cohomology spectrum (cochain complex) and Hochschild homology spectrum, which is analogous to the structure of calculus on a manifold. This algebraic structure is encoded by a two-colored operad introduced by Kontsevich and Soibelman. We prove that for a stable idempotent-complete infinity-category, the pair of its Hochschild cohomology and homology spectra naturally admits the structure of algebra over the operad. Moreover, we prove a generalization to the equivariant context.
Keywords: Hochschild cohomology, Hochschild homology, operad, $\infty$-category.
Funding agency Grant number
Japan Society for the Promotion of Science 17K14150
This work is supported by JSPS KAKENHI grant 17K14150.
Received: February 25, 2020; in final form September 4, 2020; Published online October 2, 2020
Bibliographic databases:
Document Type: Article
MSC: 16E40, 18N60, 18M60
Language: English
Citation: Isamu Iwanari, “Differential Calculus of Hochschild Pairs for Infinity-Categories”, SIGMA, 16 (2020), 097, 57 pp.
Citation in format AMSBIB
\Bibitem{Iwa20}
\by Isamu~Iwanari
\paper Differential Calculus of Hochschild Pairs for Infinity-Categories
\jour SIGMA
\yr 2020
\vol 16
\papernumber 097
\totalpages 57
\mathnet{http://mi.mathnet.ru/sigma1634}
\crossref{https://doi.org/10.3842/SIGMA.2020.097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000575385000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092393613}
Linking options:
  • https://www.mathnet.ru/eng/sigma1634
  • https://www.mathnet.ru/eng/sigma/v16/p97
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :119
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024