Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 096, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.096
(Mi sigma1633)
 

This article is cited in 2 scientific papers (total in 2 papers)

Torus-Equivariant Chow Rings of Quiver Moduli

Hans Franzen

Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
Full-text PDF (501 kB) Citations (2)
References:
Abstract: We compute rational equivariant Chow rings with respect to a torus of quiver moduli spaces. We derive a presentation in terms of generators and relations, use torus localization to identify it as a subring of the Chow ring of the fixed point locus, and we compare the two descriptions.
Keywords: torus actions, equivariant Chow rings, torus localization, quiver moduli.
Funding agency Grant number
National Science Foundation DFG SFB/TR 191
At the time this research was conducted I was supported by the DFG SFB/TR 191 “Symplectic structures in geometry, algebra, and dynamics”.
Received: March 14, 2020; in final form September 16, 2020; Published online September 30, 2020
Bibliographic databases:
Document Type: Article
MSC: 14C15, 16G20
Language: English
Citation: Hans Franzen, “Torus-Equivariant Chow Rings of Quiver Moduli”, SIGMA, 16 (2020), 096, 22 pp.
Citation in format AMSBIB
\Bibitem{Fra20}
\by Hans~Franzen
\paper Torus-Equivariant Chow Rings of Quiver Moduli
\jour SIGMA
\yr 2020
\vol 16
\papernumber 096
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma1633}
\crossref{https://doi.org/10.3842/SIGMA.2020.096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000575384300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092415857}
Linking options:
  • https://www.mathnet.ru/eng/sigma1633
  • https://www.mathnet.ru/eng/sigma/v16/p96
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024