Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 090, 8 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.090
(Mi sigma1627)
 

This article is cited in 1 scientific paper (total in 1 paper)

About Bounds for Eigenvalues of the Laplacian with Density

Aïssatou Mossèle Ndiaye

Institut de Mathématiques, Université de Neuchâtel, Switzerland
Full-text PDF (336 kB) Citations (1)
References:
Abstract: Let $M$ denote a compact, connected Riemannian manifold of dimension $n\in\mathbb{N}$. We assume that $ M$ has a smooth and connected boundary. Denote by $g$ and $\mathrm{d}v_g$ respectively, the Riemannian metric on $M$ and the associated volume element. Let $\Delta$ be the Laplace operator on $M$ equipped with the weighted volume form $\mathrm{d}m:= \mathrm{e}^{-h}\,\mathrm{d}v_g$. We are interested in the operator $L_h\cdot:=\mathrm{e}^{-h(\alpha-1)}(\Delta\cdot +\alpha g(\nabla h,\nabla\cdot))$, where $\alpha > 1$ and $h\in C^2(M)$ are given. The main result in this paper states about the existence of upper bounds for the eigenvalues of the weighted Laplacian $L_h$ with the Neumann boundary condition if the boundary is non-empty.
Keywords: eigenvalue, Laplacian, density, Cheeger inequality, upper bounds.
Received: February 13, 2020; in final form September 1, 2020; Published online September 25, 2020
Bibliographic databases:
Document Type: Article
MSC: 35P15, 58J50
Language: English
Citation: Aïssatou Mossèle Ndiaye, “About Bounds for Eigenvalues of the Laplacian with Density”, SIGMA, 16 (2020), 090, 8 pp.
Citation in format AMSBIB
\Bibitem{Ndi20}
\by A{\"\i}ssatou~Moss\`ele~Ndiaye
\paper About Bounds for Eigenvalues of the Laplacian with Density
\jour SIGMA
\yr 2020
\vol 16
\papernumber 090
\totalpages 8
\mathnet{http://mi.mathnet.ru/sigma1627}
\crossref{https://doi.org/10.3842/SIGMA.2020.090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000575381200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092350846}
Linking options:
  • https://www.mathnet.ru/eng/sigma1627
  • https://www.mathnet.ru/eng/sigma/v16/p90
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024