Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 087, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.087
(Mi sigma1624)
 

Perturbed $(2n-1)$-Dimensional Kepler Problem and the Nilpotent Adjoint Orbits of $U(n, n)$

Anatol Odzijewicz

Department of Mathematics, University of Białystok, Ciołkowskiego 1M, 15-245 Białystok, Poland
References:
Abstract: We study the regularized $(2n-1)$-Kepler problem and other Hamiltonian systems which are related to the nilpotent coadjoint orbits of $U(n,n)$. The Kustaanheimo–Stiefel and Cayley regularization procedures are discussed and their equivalence is shown. Some integrable generalization (perturbation) of $(2n-1)$-Kepler problem is proposed.
Keywords: integrable Hamiltonian systems, Kepler problem, nonlinear differential equations, symplectic geometry, Poisson geometry, Kustaanheimo–Stiefel transformation, celestial mechanics.
Received: March 11, 2020; in final form September 1, 2020; Published online September 22, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Anatol Odzijewicz, “Perturbed $(2n-1)$-Dimensional Kepler Problem and the Nilpotent Adjoint Orbits of $U(n, n)$”, SIGMA, 16 (2020), 087, 23 pp.
Citation in format AMSBIB
\Bibitem{Odz20}
\by Anatol~Odzijewicz
\paper Perturbed $(2n-1)$-Dimensional Kepler Problem and the Nilpotent Adjoint Orbits of $U(n, n)$
\jour SIGMA
\yr 2020
\vol 16
\papernumber 087
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma1624}
\crossref{https://doi.org/10.3842/SIGMA.2020.087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000571673900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091497103}
Linking options:
  • https://www.mathnet.ru/eng/sigma1624
  • https://www.mathnet.ru/eng/sigma/v16/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:84
    Full-text PDF :22
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024