Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 086, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.086
(Mi sigma1623)
 

This article is cited in 1 scientific paper (total in 1 paper)

Uniform Lower Bound for Intersection Numbers of $\psi$-Classes

Vincent Delecroixa, Élise Goujardb, Peter Zografcd, Anton Zorichef

a LaBRI, Domaine universitaire, 351 cours de la Libération, 33405 Talence, France
b Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France
c Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
d Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O. 29B, St. Petersburg, 199178, Russia
e Center for Advanced Studies, Skoltech, Russia
f Institut de Mathématiques de Jussieu – Paris Rive Gauche, Bâtiment Sophie Germain, Case 7012, 8 Place Aurélie Nemours, 75205 PARIS Cedex 13, France
Full-text PDF (419 kB) Citations (1)
References:
Abstract: We approximate intersection numbers $\big\langle \psi_1^{d_1}\cdots \psi_n^{d_n}\big\rangle_{g,n}$ on Deligne–Mumford's moduli space $\overline{\mathcal{M}}_{g,n}$ of genus $g$ stable complex curves with $n$ marked points by certain closed-form expressions in $d_1,\dots,d_n$. Conjecturally, these approximations become asymptotically exact uniformly in $d_i$ when $g\to\infty$ and $n$ remains bounded or grows slowly. In this note we prove a lower bound for the intersection numbers in terms of the above-mentioned approximating expressions multiplied by an explicit factor $\lambda(g,n)$, which tends to $1$ when $g\to\infty$ and $d_1+\dots+d_{n-2}=o(g)$.
Keywords: intersection numbers, $\psi$-classes, Witten–Kontsevich correlators, moduli space of curves, large genus asymptotics.
Funding agency Grant number
Russian Science Foundation 19-71-30002
Agence Nationale de la Recherche ANR-19-CE40-0021
National Science Foundation DMS-1440140
The research of the second author was partially supported by PEPS. The results of Section 1 were obtained at Saint Petersburg State University under support of RSF grant 19-71-30002. This material is based upon work supported by the ANR-19-CE40-0021 grant. It was also supported by the NSF Grant DMS-1440140 while part of the authors were in residence at the MSRI during the Fall 2019 semester.
Received: April 9, 2020; in final form August 21, 2020; Published online August 26, 2020
Bibliographic databases:
Document Type: Article
MSC: 14C17, 14H70
Language: English
Citation: Vincent Delecroix, Élise Goujard, Peter Zograf, Anton Zorich, “Uniform Lower Bound for Intersection Numbers of $\psi$-Classes”, SIGMA, 16 (2020), 086, 13 pp.
Citation in format AMSBIB
\Bibitem{DelGouZog20}
\by Vincent~Delecroix, \'Elise~Goujard, Peter~Zograf, Anton~Zorich
\paper Uniform Lower Bound for Intersection Numbers of $\psi$-Classes
\jour SIGMA
\yr 2020
\vol 16
\papernumber 086
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma1623}
\crossref{https://doi.org/10.3842/SIGMA.2020.086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564522400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85093907979}
Linking options:
  • https://www.mathnet.ru/eng/sigma1623
  • https://www.mathnet.ru/eng/sigma/v16/p86
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:114
    Full-text PDF :36
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024