Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 085, 33 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.085
(Mi sigma1622)
 

This article is cited in 2 scientific papers (total in 2 papers)

A Fock Model and the Segal–Bargmann Transform for the Minimal Representation of the Orthosymplectic Lie Superalgebra $\mathfrak{osp}(m,2|2n)$

Sigiswald Barbier, Sam Claerebout, Hendrik De Bie

Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
Full-text PDF (518 kB) Citations (2)
References:
Abstract: The minimal representation of a semisimple Lie group is a ‘small’ infinite-dimensional irreducible unitary representation. It is thought to correspond to the minimal nilpotent coadjoint orbit in Kirillov's orbit philosophy. The Segal–Bargmann transform is an intertwining integral transformation between two different models of the minimal representation for Hermitian Lie groups of tube type. In this paper we construct a Fock model for the minimal representation of the orthosymplectic Lie superalgebra $\mathfrak{osp}(m,2|2n)$. We also construct an integral transform which intertwines the Schrödinger model for the minimal representation of the orthosymplectic Lie superalgebra $\mathfrak{osp}(m,2|2n)$ with this new Fock model.
Keywords: Segal–Bargmann transform, Fock model, Schrödinger model, minimal representations, Lie superalgebras, spherical harmonics, Bessel–Fischer product.
Funding agency Grant number
Fonds Wetenschappelijk Onderzoek EOS 30889451
Ghent University
SB is supported by a BOF Postdoctoral Fellowship from Ghent University. HDB is supported by the Research Foundation Flanders (FWO) under Grant EOS 30889451.
Received: March 17, 2020; in final form August 12, 2020; Published online August 26, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Sigiswald Barbier, Sam Claerebout, Hendrik De Bie, “A Fock Model and the Segal–Bargmann Transform for the Minimal Representation of the Orthosymplectic Lie Superalgebra $\mathfrak{osp}(m,2|2n)$”, SIGMA, 16 (2020), 085, 33 pp.
Citation in format AMSBIB
\Bibitem{BarClaDe 20}
\by Sigiswald~Barbier, Sam~Claerebout, Hendrik~De Bie
\paper A Fock Model and the Segal--Bargmann Transform for the Minimal Representation of the Orthosymplectic Lie Superalgebra $\mathfrak{osp}(m,2|2n)$
\jour SIGMA
\yr 2020
\vol 16
\papernumber 085
\totalpages 33
\mathnet{http://mi.mathnet.ru/sigma1622}
\crossref{https://doi.org/10.3842/SIGMA.2020.085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564521100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85093895765}
Linking options:
  • https://www.mathnet.ru/eng/sigma1622
  • https://www.mathnet.ru/eng/sigma/v16/p85
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:87
    Full-text PDF :28
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024