Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 084, 28 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.084
(Mi sigma1621)
 

This article is cited in 2 scientific papers (total in 2 papers)

Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions

Ayumu Hoshinoa, Jun'ichi Shiraishib

a Hiroshima Institute of Technology, Miyake, Hiroshima 731-5193, Japan
b Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914, Japan
Full-text PDF (558 kB) Citations (2)
References:
Abstract: We present an explicit formula for the transition matrix $\mathcal{C}$ from the type $BC_n$ Koornwinder polynomials $P_{(1^r)}(x|a,b,c,d|q,t)$ with one column diagrams, to the type $BC_n$ monomial symmetric polynomials $m_{(1^{r})}(x)$. The entries of the matrix $\mathcal{C}$ enjoy a set of four terms recursion relations. These recursions provide us with the branching rules for the Koornwinder polynomials with one column diagrams, namely the restriction rules from $BC_n$ to $BC_{n-1}$. To have a good description of the transition matrices involved, we introduce the following degeneration scheme of the Koornwinder polynomials: $P_{(1^r)}(x|a,b,c,d|q,t) \longleftrightarrow P_{(1^r)}(x|a,-a,c,d|q,t)\longleftrightarrow P_{(1^r)}(x|a,-a,c,-c|q,t) \longleftrightarrow P_{(1^r)}\big(x|t^{1/2}c,-t^{1/2}c,c,-c|q,t\big) \longleftrightarrow P_{(1^r)}\big(x|t^{1/2},-t^{1/2},1,-1|q,t\big)$. We prove that the transition matrices associated with each of these degeneration steps are given in terms of the matrix inversion formula of Bressoud. As an application, we give an explicit formula for the Kostka polynomials of type $B_n$, namely the transition matrix from the Schur polynomials $P^{(B_n,B_n)}_{(1^r)}(x|q;q,q)$ to the Hall–Littlewood polynomials $P^{(B_n,B_n)}_{(1^r)}(x|t;0,t)$. We also present a conjecture for the asymptotically free eigenfunctions of the $B_n$ $q$-Toda operator, which can be regarded as a branching formula from the $B_n$ $q$-Toda eigenfunction restricted to the $A_{n-1}$ $q$-Toda eigenfunctions.
Keywords: Koornwinder polynomial, degeneration scheme, Kostka polynomial of type $B_n$, $q$-Toda eigenfunction.
Funding agency Grant number
Japan Society for the Promotion of Science 16K05186
19K03530
15K04808
19K03512
Research of A.H. is supported by JSPS KAKENHI (Grant Number 16K05186 and 19K03530). Research of J.S. is supported by JSPS KAKENHI (Grant Numbers 15K04808, 19K03512, 16K05186 and 19K03530).
Received: April 2, 2020; in final form August 18, 2020; Published online August 25, 2020
Bibliographic databases:
Document Type: Article
MSC: 33D52, 33D45
Language: English
Citation: Ayumu Hoshino, Jun'ichi Shiraishi, “Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions”, SIGMA, 16 (2020), 084, 28 pp.
Citation in format AMSBIB
\Bibitem{HosShi20}
\by Ayumu~Hoshino, Jun'ichi~Shiraishi
\paper Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions
\jour SIGMA
\yr 2020
\vol 16
\papernumber 084
\totalpages 28
\mathnet{http://mi.mathnet.ru/sigma1621}
\crossref{https://doi.org/10.3842/SIGMA.2020.084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564520600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85093897506}
Linking options:
  • https://www.mathnet.ru/eng/sigma1621
  • https://www.mathnet.ru/eng/sigma/v16/p84
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :38
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024