Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 074, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.074
(Mi sigma1611)
 

This article is cited in 7 scientific papers (total in 7 papers)

The Endless Beta Integrals

Gor A. Sarkissianabc, Vyacheslav P. Spiridonovba

a Laboratory of Theoretical Physics, JINR, Dubna, 141980, Russia
b St. Petersburg Department of the Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, St. Petersburg, 191023 Russia
c Department of Physics, Yerevan State University, Yerevan, Armenia
Full-text PDF (480 kB) Citations (7)
References:
Abstract: We consider a special degeneration limit $\omega_1\to - \omega_2$ (or $b\to {\rm i}$ in the context of $2d$ Liouville quantum field theory) for the most general univariate hyperbolic beta integral. This limit is also applied to the most general hyperbolic analogue of the Euler–Gauss hypergeometric function and its $W(E_7)$ group of symmetry transformations. Resulting functions are identified as hypergeometric functions over the field of complex numbers related to the $\mathrm{SL}(2,\mathbb{C})$ group. A new similar nontrivial hypergeometric degeneration of the Faddeev modular quantum dilogarithm (or hyperbolic gamma function) is discovered in the limit $\omega_1\to \omega_2$ (or $b\to 1$).
Keywords: elliptic hypergeometric functions, complex gamma function, beta integrals, star-triangle relation.
Funding agency Grant number
Russian Science Foundation 19-11-00131
The key results of this work were obtained within the research program of project no. 19-11-00131 supported by the Russian Science Foundation.
Received: May 5, 2020; in final form July 24, 2020; Published online August 5, 2020
Bibliographic databases:
Document Type: Article
MSC: 33D60, 33E20
Language: English
Citation: Gor A. Sarkissian, Vyacheslav P. Spiridonov, “The Endless Beta Integrals”, SIGMA, 16 (2020), 074, 21 pp.
Citation in format AMSBIB
\Bibitem{SarSpi20}
\by Gor~A.~Sarkissian, Vyacheslav~P.~Spiridonov
\paper The Endless Beta Integrals
\jour SIGMA
\yr 2020
\vol 16
\papernumber 074
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma1611}
\crossref{https://doi.org/10.3842/SIGMA.2020.074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000557918500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090544002}
Linking options:
  • https://www.mathnet.ru/eng/sigma1611
  • https://www.mathnet.ru/eng/sigma/v16/p74
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :33
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024