|
This article is cited in 16 scientific papers (total in 16 papers)
Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov–Kaplansky Conjecture
Alexei Kanel-Belova, Sergey Malevb, Louis Rowenc, Roman Yavichb a Bar-Ilan University, MIPT, Israel
b Department of Mathematics, Ariel University of Samaria, Ariel, Israel
c Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
Abstract:
Let $p$ be a polynomial in several non-commuting variables with coefficients in a field $K$ of arbitrary characteristic. It has been conjectured that for any $n$, for $p$ multilinear, the image of $p$ evaluated on the set $M_n(K)$ of $n$ by $n$ matrices is either zero, or the set of scalar matrices, or the set ${\rm sl}_n(K)$ of matrices of trace 0, or all of $M_n(K)$. This expository paper describes research on this problem and related areas. We discuss the solution of this conjecture for $n=2$ in Section 2, some decisive results for $n=3$ in Section 3, and partial information for $n\geq 3$ in Section 4, also for non-multilinear polynomials. In addition we consider the case of $K$ not algebraically closed, and polynomials evaluated on other finite dimensional simple algebras (in particular the algebra of the quaternions). This review recollects results and technical material of our previous papers, as well as new results of other researches, and applies them in a new context. This article also explains the role of the Deligne trick, which is related to some nonassociative cases in new situations, underlying our earlier, more straightforward approach. We pose some problems for future generalizations and point out possible generalizations in the present state of art, and in the other hand providing counterexamples showing the boundaries of generalizations.
Keywords:
L'vov–Kaplansky conjecture, noncommutative polynomials, multilinear polynomial evaluations, power central polynomials, the Deligne trick, PI algebras.
Received: September 18, 2019; in final form July 8, 2020; Published online July 27, 2020
Citation:
Alexei Kanel-Belov, Sergey Malev, Louis Rowen, Roman Yavich, “Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov–Kaplansky Conjecture”, SIGMA, 16 (2020), 071, 61 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1608 https://www.mathnet.ru/eng/sigma/v16/p71
|
Statistics & downloads: |
Abstract page: | 171 | Full-text PDF : | 57 | References: | 15 |
|