Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 065, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.065
(Mi sigma1602)
 

This article is cited in 2 scientific papers (total in 2 papers)

Solvable Lie Algebras of Vector Fields and a Lie's Conjecture

Katarzyna Grabowskaa, Janusz Grabowskib

a Faculty of Physics, University of Warsaw, Poland
b Institute of Mathematics, Polish Academy of Sciences, Poland
Full-text PDF (366 kB) Citations (2)
References:
Abstract: We present a local and constructive differential geometric description of finite-dimensional solvable and transitive Lie algebras of vector fields. We show that it implies a Lie's conjecture for such Lie algebras. Also infinite-dimensional analytical solvable and transitive Lie algebras of vector fields whose derivative ideal is nilpotent can be adapted to this scheme.
Keywords: vector field, nilpotent Lie algebra, solvable Lie algebra, dilation, foliation.
Funding agency Grant number
Narodowe Centrum Nauki 2016/22/M/ST1/00542
Research founded by the Polish National Science Centre grant under the contract number 2016/22/M/ST1/00542.
Received: February 4, 2020; in final form July 2, 2020; Published online July 10, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Katarzyna Grabowska, Janusz Grabowski, “Solvable Lie Algebras of Vector Fields and a Lie's Conjecture”, SIGMA, 16 (2020), 065, 14 pp.
Citation in format AMSBIB
\Bibitem{GraGra20}
\by Katarzyna~Grabowska, Janusz~Grabowski
\paper Solvable Lie Algebras of Vector Fields and a Lie's Conjecture
\jour SIGMA
\yr 2020
\vol 16
\papernumber 065
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1602}
\crossref{https://doi.org/10.3842/SIGMA.2020.065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000548129500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090675894}
Linking options:
  • https://www.mathnet.ru/eng/sigma1602
  • https://www.mathnet.ru/eng/sigma/v16/p65
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024