Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 059, 31 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.059
(Mi sigma1596)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mirror Symmetry for Nonabelian Landau–Ginzburg Models

Nathan Priddisa, Joseph Wardb, Matthew M. Williamsc

a Brigham Young University, USA
b University of Utah, USA
c Colorado State University, USA
Full-text PDF (504 kB) Citations (3)
References:
Abstract: We consider Landau–Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group $G^\star$, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat type polynomials.
Keywords: mirror symmetry, Landau–Ginzburg models, Calabi–Yau, nonabelian.
Received: September 24, 2019; in final form June 12, 2020; Published online June 27, 2020
Bibliographic databases:
Document Type: Article
MSC: 14J32, 53D45, 14J81
Language: English
Citation: Nathan Priddis, Joseph Ward, Matthew M. Williams, “Mirror Symmetry for Nonabelian Landau–Ginzburg Models”, SIGMA, 16 (2020), 059, 31 pp.
Citation in format AMSBIB
\Bibitem{PriWarWil20}
\by Nathan~Priddis, Joseph~Ward, Matthew~M.~Williams
\paper Mirror Symmetry for Nonabelian Landau--Ginzburg Models
\jour SIGMA
\yr 2020
\vol 16
\papernumber 059
\totalpages 31
\mathnet{http://mi.mathnet.ru/sigma1596}
\crossref{https://doi.org/10.3842/SIGMA.2020.059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000545961400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089704074}
Linking options:
  • https://www.mathnet.ru/eng/sigma1596
  • https://www.mathnet.ru/eng/sigma/v16/p59
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :27
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024