|
This article is cited in 3 scientific papers (total in 3 papers)
New Explicit Lorentzian Einstein–Weyl Structures in 3-Dimensions
Joël Merkera, Paweł Nurowskib a Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
b Centrum Fizyki Teoretycznej, Polska Akademia Nauk,
Al. Lotników 32/46, 02-668 Warszawa, Poland
Abstract:
On a $3$D manifold, a Weyl geometry consists of pairs $(g, A) =$ (metric, $1$-form) modulo gauge $\widehat{g} = {\rm e}^{2\varphi} g$, $\widehat{A} = A + {\rm d}\varphi$. In 1943, Cartan showed that every solution to the Einstein–Weyl equations $R_{(\mu\nu)} - \frac{1}{3} R g_{\mu\nu} = 0$ comes from an appropriate $3$D leaf space quotient of a $7$D connection bundle associated with a 3$^{\mathrm{rd}}$ order ODE $y''' = H(x,y,y',y'')$ modulo point transformations, provided $2$ among $3$ primary point invariants vanish
\begin{gather*}
\text{Wunschmann}(H) \equiv 0\equiv \text{Cartan}(H).
\end{gather*}
We find that point equivalence of a single PDE $z_y = F(x,y,z,z_x)$ with para-CR integrability $DF := F_x + z_x F_z \equiv 0$ leads to a completely similar $7$D Cartan bundle and connection. Then magically, the (complicated) equation $\text{Wunschmann}(H) \equiv 0$ becomes
\begin{gather*}
0\equiv\text{Monge}(F):=9F_{pp}^2F_{ppppp}-45F_{pp}F_{ppp}F_{pppp}+40F_{ppp}^3,\qquad p:=z_x,
\end{gather*}
whose solutions are just conics in the $\{p, F\}$-plane. As an ansatz, we take
\begin{gather*}
F(x,y,z,p):= \frac{\alpha(y)(z-xp)^2\!+\beta(y)(z-xp)p+\gamma(y)(z-xp) +\delta(y)p^2\!+\varepsilon(y)p+\zeta(y)}{\lambda(y)(z-xp)+\mu(y) p+\nu(y)},\!
\end{gather*}
with $9$ arbitrary functions $\alpha, \dots, \nu$ of $y$. This $F$ satisfies $DF \equiv 0 \equiv \text{Monge}(F)$, and we show that the condition $\text{Cartan}(H) \equiv 0 $ passes to a certain $\text{Cartan}(F) \equiv 0$ which holds for any choice of $\alpha(y), \dots, \nu(y)$. Descending to the leaf space quotient, we gain $\infty$-dimensional functionally parametrized and explicit families of Einstein–Weyl structures $\big[ (g, A) \big]$ in $3$D. These structures are nontrivial in the sense that $\mathrm{d}A \not\equiv 0$ and $\text{Cotton}([g]) \not \equiv 0$.
Keywords:
Einstein–Weyl structures, Lorentzian metrics, para-CR structures, third-order ordinary differential equations, Monge invariant, Wünschmann invariant, Cartan's method of equivalence, exterior differential systems.
Received: March 30, 2020; in final form June 8, 2020; Published online June 17, 2020
Citation:
Joël Merker, Paweł Nurowski, “New Explicit Lorentzian Einstein–Weyl Structures in 3-Dimensions”, SIGMA, 16 (2020), 056, 16 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1593 https://www.mathnet.ru/eng/sigma/v16/p56
|
|