Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 056, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.056
(Mi sigma1593)
 

This article is cited in 3 scientific papers (total in 3 papers)

New Explicit Lorentzian Einstein–Weyl Structures in 3-Dimensions

Joël Merkera, Paweł Nurowskib

a Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
b Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotników 32/46, 02-668 Warszawa, Poland
Full-text PDF (505 kB) Citations (3)
References:
Abstract: On a $3$D manifold, a Weyl geometry consists of pairs $(g, A) =$ (metric, $1$-form) modulo gauge $\widehat{g} = {\rm e}^{2\varphi} g$, $\widehat{A} = A + {\rm d}\varphi$. In 1943, Cartan showed that every solution to the Einstein–Weyl equations $R_{(\mu\nu)} - \frac{1}{3} R g_{\mu\nu} = 0$ comes from an appropriate $3$D leaf space quotient of a $7$D connection bundle associated with a 3$^{\mathrm{rd}}$ order ODE $y''' = H(x,y,y',y'')$ modulo point transformations, provided $2$ among $3$ primary point invariants vanish
\begin{gather*} \text{Wunschmann}(H) \equiv 0\equiv \text{Cartan}(H). \end{gather*}
We find that point equivalence of a single PDE $z_y = F(x,y,z,z_x)$ with para-CR integrability $DF := F_x + z_x F_z \equiv 0$ leads to a completely similar $7$D Cartan bundle and connection. Then magically, the (complicated) equation $\text{Wunschmann}(H) \equiv 0$ becomes
\begin{gather*} 0\equiv\text{Monge}(F):=9F_{pp}^2F_{ppppp}-45F_{pp}F_{ppp}F_{pppp}+40F_{ppp}^3,\qquad p:=z_x, \end{gather*}
whose solutions are just conics in the $\{p, F\}$-plane. As an ansatz, we take
\begin{gather*} F(x,y,z,p):= \frac{\alpha(y)(z-xp)^2\!+\beta(y)(z-xp)p+\gamma(y)(z-xp) +\delta(y)p^2\!+\varepsilon(y)p+\zeta(y)}{\lambda(y)(z-xp)+\mu(y) p+\nu(y)},\! \end{gather*}
with $9$ arbitrary functions $\alpha, \dots, \nu$ of $y$. This $F$ satisfies $DF \equiv 0 \equiv \text{Monge}(F)$, and we show that the condition $\text{Cartan}(H) \equiv 0 $ passes to a certain $\text{Cartan}(F) \equiv 0$ which holds for any choice of $\alpha(y), \dots, \nu(y)$. Descending to the leaf space quotient, we gain $\infty$-dimensional functionally parametrized and explicit families of Einstein–Weyl structures $\big[ (g, A) \big]$ in $3$D. These structures are nontrivial in the sense that $\mathrm{d}A \not\equiv 0$ and $\text{Cotton}([g]) \not \equiv 0$.
Keywords: Einstein–Weyl structures, Lorentzian metrics, para-CR structures, third-order ordinary differential equations, Monge invariant, Wünschmann invariant, Cartan's method of equivalence, exterior differential systems.
Funding agency Grant number
Narodowe Centrum Nauki 2018/29/B/ST1/02583
This collaboration is supported by the National Science Center, Poland, grant number 2018/29/B/ST1/02583.
Received: March 30, 2020; in final form June 8, 2020; Published online June 17, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Joël Merker, Paweł Nurowski, “New Explicit Lorentzian Einstein–Weyl Structures in 3-Dimensions”, SIGMA, 16 (2020), 056, 16 pp.
Citation in format AMSBIB
\Bibitem{MerNur20}
\by Jo\"el~Merker, Pawe\l ~Nurowski
\paper New Explicit Lorentzian Einstein--Weyl Structures in 3-Dimensions
\jour SIGMA
\yr 2020
\vol 16
\papernumber 056
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma1593}
\crossref{https://doi.org/10.3842/SIGMA.2020.056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000541049000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090622823}
Linking options:
  • https://www.mathnet.ru/eng/sigma1593
  • https://www.mathnet.ru/eng/sigma/v16/p56
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024