Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 048, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.048
(Mi sigma1585)
 

This article is cited in 3 scientific papers (total in 3 papers)

Triply Periodic Monopoles and Difference Modules on Elliptic Curves

Takuro Mochizuki

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan
Full-text PDF (480 kB) Citations (3)
References:
Abstract: We explain the correspondences between twisted monopoles with Dirac type singularity and polystable twisted mini-holomorphic bundles with Dirac type singularity on a 3-dimensional torus. We also explain that they are equivalent to polystable parabolic twisted difference modules on elliptic curves.
Keywords: twisted monopoles, twisted difference modules, twisted mini-holomorphic bundles, Kobayashi–Hitchin correspondence.
Funding agency Grant number
Japan Society for the Promotion of Science 17H06127
16H06335
15K04843
20K03609
I am partially supported by the Grant-in-Aid for Scientific Research (S) (No. 17H06127), the Grant-in-Aid for Scientific Research (S) (No. 16H06335), and the Grant-in-Aid for Scientific Research (C) (No. 15K04843), Grant-in-Aid for Scientific Research (C) (No. 20K03609), Japan Society for the Promotion of Science.
Received: October 29, 2019; in final form May 18, 2020; Published online June 3, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Takuro Mochizuki, “Triply Periodic Monopoles and Difference Modules on Elliptic Curves”, SIGMA, 16 (2020), 048, 23 pp.
Citation in format AMSBIB
\Bibitem{Moc20}
\by Takuro~Mochizuki
\paper Triply Periodic Monopoles and Difference Modules on Elliptic Curves
\jour SIGMA
\yr 2020
\vol 16
\papernumber 048
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma1585}
\crossref{https://doi.org/10.3842/SIGMA.2020.048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000539062800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090617601}
Linking options:
  • https://www.mathnet.ru/eng/sigma1585
  • https://www.mathnet.ru/eng/sigma/v16/p48
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :27
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024