Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 043, 49 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.043
(Mi sigma1580)
 

This article is cited in 13 scientific papers (total in 13 papers)

Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$

Naihuan Jinga, Ming Liubc, Alexander Molevc

a Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b School of Mathematics, South China University of Technology, Guangzhou, 510640, China
c School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
References:
Abstract: Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277–300] for type $A$, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the $R$-matrix presentation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type $C$ were given therein, while the present paper deals with types $B$ and $D$. The arguments for all classical types are quite similar so we mostly concentrate on necessary additional details specific to the underlying orthogonal Lie algebras.
Keywords: $R$-matrix presentation, Drinfeld new presentation, universal $R$-matrix, Gauss decomposition.
Funding agency Grant number
National Natural Science Foundation of China 11531004
11701182
Simons Foundation 523868
Natural Science Foundation of Guangdong Province 2019A1515012039
Australian Research Council DP180101825
Jing acknowledges the National Natural Science Foundation of China grant 11531004 and Simons Foundation grant 523868. Liu acknowledges the National Natural Science Foundation of China grant 11531004, 11701182 and the Guangdong Natural Science Foundation grant 2019A1515012039. Liu and Molev acknowledge the support of the Australian Research Council, grant DP180101825.
Received: November 18, 2019; in final form May 10, 2020; Published online May 21, 2020
Bibliographic databases:
Document Type: Article
MSC: 17B37, 17B69
Language: English
Citation: Naihuan Jing, Ming Liu, Alexander Molev, “Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$”, SIGMA, 16 (2020), 043, 49 pp.
Citation in format AMSBIB
\Bibitem{JinLiuMol20}
\by Naihuan~Jing, Ming~Liu, Alexander~Molev
\paper Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$
\jour SIGMA
\yr 2020
\vol 16
\papernumber 043
\totalpages 49
\mathnet{http://mi.mathnet.ru/sigma1580}
\crossref{https://doi.org/10.3842/SIGMA.2020.043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000535795900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090686337}
Linking options:
  • https://www.mathnet.ru/eng/sigma1580
  • https://www.mathnet.ru/eng/sigma/v16/p43
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :21
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024