Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 037, 35 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.037
(Mi sigma1574)
 

An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$

Sarah Posta, Paul Terwilligerb

a Department of Mathematics, University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
b Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
References:
Abstract: Let $\mathbb F$ denote a field, and pick a nonzero $q \in \mathbb F$ that is not a root of unity. Let $\mathbb Z_4=\mathbb Z/4 \mathbb Z$ denote the cyclic group of order 4. Define a unital associative ${\mathbb F}$-algebra $\square_q$ by generators $\lbrace x_i \rbrace_{i \in \mathbb Z_4}$ and relations
\begin{gather*} \frac{q x_i x_{i+1}-q^{-1}x_{i+1}x_i}{q-q^{-1}} = 1,\qquad x^3_i x_{i+2} - \lbrack 3 \rbrack_q x^2_i x_{i+2} x_i + \lbrack 3 \rbrack_q x_i x_{i+2} x^2_i -x_{i+2} x^3_i = 0, \end{gather*}
where $\lbrack 3 \rbrack_q = \big(q^3-q^{-3}\big)/\big(q-q^{-1}\big)$. Let $V$ denote a $\square_q$-module. A vector $\xi\in V$ is called NIL whenever $x_1 \xi = 0 $ and $x_3 \xi=0$ and $\xi \not=0$. The $\square_q$-module $V$ is called NIL whenever $V$ is generated by a NIL vector. We show that up to isomorphism there exists a unique NIL $\square_q$-module, and it is irreducible and infinite-dimensional. We describe this module from sixteen points of view. In this description an important role is played by the $q$-shuffle algebra for affine $\mathfrak{sl}_2$.
Keywords: quantum group, $q$-Serre relations, derivation, $q$-Onsager algebra.
Funding agency Grant number
Simons Foundation 3192112
The first author acknowledges support by the Simons Foundation Collaboration Grant 3192112.
Received: August 18, 2019; in final form April 19, 2020; Published online May 4, 2020
Bibliographic databases:
Document Type: Article
MSC: 17B37
Language: English
Citation: Sarah Post, Paul Terwilliger, “An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$”, SIGMA, 16 (2020), 037, 35 pp.
Citation in format AMSBIB
\Bibitem{PosTer20}
\by Sarah~Post, Paul~Terwilliger
\paper An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$
\jour SIGMA
\yr 2020
\vol 16
\papernumber 037
\totalpages 35
\mathnet{http://mi.mathnet.ru/sigma1574}
\crossref{https://doi.org/10.3842/SIGMA.2020.037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000530350500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084794811}
Linking options:
  • https://www.mathnet.ru/eng/sigma1574
  • https://www.mathnet.ru/eng/sigma/v16/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024