Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 017, 33 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.017
(Mi sigma1554)
 

Legendrian DGA Representations and the Colored Kauffman Polynomial

Justin Murraya, Dan Rutherfordb

a Department of Mathematics, 303 Lockett Hall, Louisiana State University, Baton Rouge, LA 70803-4918, USA
b Department of Mathematical Sciences, Ball State University, 2000 W. University Ave., Muncie, IN 47306, USA
References:
Abstract: For any Legendrian knot $K$ in standard contact $\mathbb{R}^3$ we relate counts of ungraded ($1$-graded) representations of the Legendrian contact homology DG-algebra $(\mathcal{A}(K),\partial)$ with the $n$-colored Kauffman polynomial. To do this, we introduce an ungraded $n$-colored ruling polynomial, $R^1_{n,K}(q)$, as a linear combination of reduced ruling polynomials of positive permutation braids and show that (i) $R^1_{n,K}(q)$ arises as a specialization $F_{n,K}(a,q)\big|_{a^{-1}=0}$ of the $n$-colored Kauffman polynomial and (ii) when $q$ is a power of two $R^1_{n,K}(q)$ agrees with the total ungraded representation number, $\operatorname{Rep}_1\big(K, \mathbb{F}_q^n\big)$, which is a normalized count of $n$-dimensional representations of $(\mathcal{A}(K),\partial)$ over the finite field $\mathbb{F}_q$. This complements results from [Leverson C., Rutherford D., Quantum Topol. 11 (2020), 55–118] concerning the colored HOMFLY-PT polynomial, $m$-graded representation numbers, and $m$-graded ruling polynomials with $m \neq 1$.
Keywords: Legendrian knots, Kauffman polynomial, ruling polynomial, augmentations.
Funding agency Grant number
Simons Foundation 429536
DR acknowledges support from Simons Foundation grant #429536.
Received: August 28, 2019; in final form March 10, 2020; Published online March 22, 2020
Bibliographic databases:
Document Type: Article
MSC: 53D42; 57M27
Language: English
Citation: Justin Murray, Dan Rutherford, “Legendrian DGA Representations and the Colored Kauffman Polynomial”, SIGMA, 16 (2020), 017, 33 pp.
Citation in format AMSBIB
\Bibitem{MurRut20}
\by Justin~Murray, Dan~Rutherford
\paper Legendrian DGA Representations and the Colored Kauffman Polynomial
\jour SIGMA
\yr 2020
\vol 16
\papernumber 017
\totalpages 33
\mathnet{http://mi.mathnet.ru/sigma1554}
\crossref{https://doi.org/10.3842/SIGMA.2020.017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000525343600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084858948}
Linking options:
  • https://www.mathnet.ru/eng/sigma1554
  • https://www.mathnet.ru/eng/sigma/v16/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024