Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 013, 35 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.013
(Mi sigma1550)
 

This article is cited in 2 scientific papers (total in 2 papers)

Cluster Structures and Subfans in Scattering Diagrams

Yan Zhou

Beijing International Center for Mathematical Research, Peking University, China
Full-text PDF (678 kB) Citations (2)
References:
Abstract: We give more precise statements of Fock–Goncharov duality conjecture for cluster varieties parametrizing ${\rm SL}_{2}/{\rm PGL}_{2}$-local systems on the once punctured torus. Then we prove these statements. Along the way, using distinct subfans in the scattering diagram, we produce an example of a cluster variety with two non-equivalent cluster structures. To overcome the technical difficulty of infinite non-cluster wall-crossing in the scattering diagram, we introduce quiver folding into the machinery of scattering diagrams and give a quotient construction of scattering diagrams.
Keywords: cluster varieties, Donaldson–Thomas transformations, Markov quiver, non-equivalent cluster structures, scattering diagrams, quiver folding.
Received: July 24, 2019; in final form March 1, 2020; Published online March 11, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yan Zhou, “Cluster Structures and Subfans in Scattering Diagrams”, SIGMA, 16 (2020), 013, 35 pp.
Citation in format AMSBIB
\Bibitem{Zho20}
\by Yan~Zhou
\paper Cluster Structures and Subfans in Scattering Diagrams
\jour SIGMA
\yr 2020
\vol 16
\papernumber 013
\totalpages 35
\mathnet{http://mi.mathnet.ru/sigma1550}
\crossref{https://doi.org/10.3842/SIGMA.2020.013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519575600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082409255}
Linking options:
  • https://www.mathnet.ru/eng/sigma1550
  • https://www.mathnet.ru/eng/sigma/v16/p13
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :51
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024