Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 029, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.029
(Mi sigma155)
 

This article is cited in 13 scientific papers (total in 13 papers)

The 6 Vertex Model and Schubert Polynomials

Alain Lascoux

Université de Marne-La-Vallée, 77454, Marne-La-Vallée, France
References:
Abstract: We enumerate staircases with fixed left and right columns. These objects correspond to ice-configurations, or alternating sign matrices, with fixed top and bottom parts. The resulting partition functions are equal, up to a normalization factor, to some Schubert polynomials.
Keywords: alternating sign matrices; Young tableaux; staircases; Schubert polynomials; integrable systems.
Received: October 24, 2006; Published online February 23, 2007
Bibliographic databases:
Document Type: Article
MSC: 05E15; 82B23
Language: English
Citation: Alain Lascoux, “The 6 Vertex Model and Schubert Polynomials”, SIGMA, 3 (2007), 029, 12 pp.
Citation in format AMSBIB
\Bibitem{Las07}
\by Alain Lascoux
\paper The 6~Vertex Model and Schubert Polynomials
\jour SIGMA
\yr 2007
\vol 3
\papernumber 029
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma155}
\crossref{https://doi.org/10.3842/SIGMA.2007.029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299830}
\zmath{https://zbmath.org/?q=an:1138.05073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236087}
Linking options:
  • https://www.mathnet.ru/eng/sigma155
  • https://www.mathnet.ru/eng/sigma/v3/p29
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :54
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024