Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 012, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.012
(Mi sigma1549)
 

Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups

Dave Witte Morris

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
References:
Abstract: We say that a subset $X$ quasi-isometrically boundedly generates a finitely generated group $\Gamma$ if each element $\gamma$ of a finite-index subgroup of $\Gamma$ can be written as a product $\gamma = x_1 x_2 \cdots x_r$ of a bounded number of elements of $X$, such that the word length of each $x_i$ is bounded by a constant times the word length of $\gamma$. A. Lubotzky, S. Mozes, and M.S. Raghunathan observed in 1993 that ${\rm SL}(n,{\mathbb Z})$ is quasi-isometrically boundedly generated by the elements of its natural ${\rm SL}(2,{\mathbb Z})$ subgroups. We generalize (a slightly weakened version of) this by showing that every $S$-arithmetic subgroup of an isotropic, almost-simple ${\mathbb Q}$-group is quasi-isometrically boundedly generated by standard ${\mathbb Q}$-rank-1 subgroups.
Keywords: arithmetic group, quasi-isometric, bounded generation, discrete subgroup.
Received: August 16, 2019; in final form March 5, 2020; Published online March 11, 2020
Bibliographic databases:
Document Type: Article
MSC: 22E40; 20F65; 11F06
Language: English
Citation: Dave Witte Morris, “Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups”, SIGMA, 16 (2020), 012, 17 pp.
Citation in format AMSBIB
\Bibitem{Mor20}
\by Dave~Witte~Morris
\paper Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups
\jour SIGMA
\yr 2020
\vol 16
\papernumber 012
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1549}
\crossref{https://doi.org/10.3842/SIGMA.2020.012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519575300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082426435}
Linking options:
  • https://www.mathnet.ru/eng/sigma1549
  • https://www.mathnet.ru/eng/sigma/v16/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :32
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024