Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 011, 29 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.011
(Mi sigma1548)
 

On Closed Finite Gap Curves in Spaceforms I

Sebastian Kleina, Martin Kilianb

a Lehrstuhl für Mathematik III, Universität Mannheim, B 6, 28–29, 68131 Mannheim, Germany
b Department of Mathematics, University College Cork, Ireland
References:
Abstract: We show that the spaces of closed finite gap curves in ${\mathbb R}^3$ and ${\mathbb S}^3$ are dense with respect to the Sobolev $W^{2,2}$-norm in the spaces of closed curves in ${\mathbb R}^3$ respectively ${\mathbb S}^3$.
Keywords: closed finite gap curves, integrable systems, nonlinear Schrödinger equation, asymptotic estimates.
Funding agency Grant number
Deutsche Forschungsgemeinschaft 414903103
Sebastian Klein is funded by the Deutsche Forschungsgemeinschaft, Grant 414903103.
Received: June 14, 2019; in final form February 28, 2020; Published online March 4, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Sebastian Klein, Martin Kilian, “On Closed Finite Gap Curves in Spaceforms I”, SIGMA, 16 (2020), 011, 29 pp.
Citation in format AMSBIB
\Bibitem{KleKil20}
\by Sebastian~Klein, Martin~Kilian
\paper On Closed Finite Gap Curves in Spaceforms~I
\jour SIGMA
\yr 2020
\vol 16
\papernumber 011
\totalpages 29
\mathnet{http://mi.mathnet.ru/sigma1548}
\crossref{https://doi.org/10.3842/SIGMA.2020.011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519575000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082430452}
Linking options:
  • https://www.mathnet.ru/eng/sigma1548
  • https://www.mathnet.ru/eng/sigma/v16/p11
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :22
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024