Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 010, 27 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.010
(Mi sigma1547)
 

Singular Nonsymmetric Macdonald Polynomials and Quasistaircases

Laura Colmenarejoa, Charles F. Dunklb

a Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, USA
b Department of Mathematics, University of Virginia, Charlottesville VA 22904-4137, USA
References:
Abstract: Singular nonsymmetric Macdonald polynomials are constructed by use of the representation theory of the Hecke algebras of the symmetric groups. These polynomials are labeled by quasistaircase partitions and are associated to special parameter values $(q,t)$. For $N$ variables, there are singular polynomials for any pair of positive integers $m$ and $n$, with $2\leq n\leq N$, and parameters values $(q,t)$ satisfying $q^{a}t^{b}=1$ exactly when $a=rm$ and $b=rn$, for some integer $r$. The coefficients of nonsymmetric Macdonald polynomials with respect to the basis of monomials $\big\{ x^{\alpha}\big\}$ are rational functions of $q$ and $t$. In this paper, we present the construction of subspaces of singular nonsymmetric Macdonald polynomials specialized to particular values of $(q,t)$. The key part of this construction is to show the coefficients have no poles at the special values of $(q,t)$. Moreover, this subspace of singular Macdonald polynomials for the special values of the parameters is an irreducible module for the Hecke algebra of type $A_{N-1}$.
Keywords: nonsymmetric Macdonald polynomials, Dunkl operators, Hecke algebra, critical pairs.
Received: September 6, 2019; in final form February 19, 2020; Published online February 27, 2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: Laura Colmenarejo, Charles F. Dunkl, “Singular Nonsymmetric Macdonald Polynomials and Quasistaircases”, SIGMA, 16 (2020), 010, 27 pp.
Citation in format AMSBIB
\Bibitem{ColDun20}
\by Laura~Colmenarejo, Charles~F.~Dunkl
\paper Singular Nonsymmetric Macdonald Polynomials and Quasistaircases
\jour SIGMA
\yr 2020
\vol 16
\papernumber 010
\totalpages 27
\mathnet{http://mi.mathnet.ru/sigma1547}
\crossref{https://doi.org/10.3842/SIGMA.2020.010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519574800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082429473}
Linking options:
  • https://www.mathnet.ru/eng/sigma1547
  • https://www.mathnet.ru/eng/sigma/v16/p10
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :26
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024