Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 090, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.090
(Mi sigma1526)
 

This article is cited in 1 scientific paper (total in 1 paper)

Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem

Yiannis Loizides

Pennsylvania State University, USA
Full-text PDF (417 kB) Citations (1)
References:
Abstract: In this short note we revisit the ‘shift-desingularization’ version of the $[Q,R]=0$ theorem for possibly singular symplectic quotients. We take as starting point an elegant proof due to Szenes–Vergne of the quasi-polynomial behavior of the multiplicity as a function of the tensor power of the prequantum line bundle. We use the Berline–Vergne index formula and the stationary phase expansion to compute the quasi-polynomial, adapting an early approach of Meinrenken.
Keywords: symplectic geometry, Hamiltonian $G$-spaces, symplectic reduction, geometric quantization, quasi-polynomials, stationary phase.
Received: July 16, 2019; in final form November 13, 2019; Published online November 18, 2019
Bibliographic databases:
Document Type: Article
MSC: 53D20; 53D50
Language: English
Citation: Yiannis Loizides, “Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem”, SIGMA, 15 (2019), 090, 15 pp.
Citation in format AMSBIB
\Bibitem{Loi19}
\by Yiannis~Loizides
\paper Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem
\jour SIGMA
\yr 2019
\vol 15
\papernumber 090
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma1526}
\crossref{https://doi.org/10.3842/SIGMA.2019.090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000504208500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075169880}
Linking options:
  • https://www.mathnet.ru/eng/sigma1526
  • https://www.mathnet.ru/eng/sigma/v15/p90
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :23
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024