Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 026, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.026
(Mi sigma152)
 

This article is cited in 12 scientific papers (total in 12 papers)

Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature

Orlando Ragniscoa, Ángel Ballesterosb, Francisco J. Herranzb, Fabio Mussoa

a Dipartimento di Fisica, Università di Roma Tre and Instituto Nazionale di Fisica Nucleare sezione di Roma Tre, Via Vasca Navale 84, I-00146 Roma, ItalyUniversità degli Studi Roma Tre
b Departamento de Física, Universidad de Burgos, E-09001 Burgos, Spain
References:
Abstract: An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of $(2N-3)$ integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum $sl(2,\mathbb R)$ Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter $z$. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter $z$. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.
Keywords: integrable systems; quantum groups; curvature; contraction; harmonic oscillator; Kepler–Coulomb; hyperbolic; de Sitter.
Received: November 12, 2006; in final form January 22, 2007; Published online February 14, 2007
Bibliographic databases:
Document Type: Article
MSC: 37J35; 17B37
Language: English
Citation: Orlando Ragnisco, Ángel Ballesteros, Francisco J. Herranz, Fabio Musso, “Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature”, SIGMA, 3 (2007), 026, 20 pp.
Citation in format AMSBIB
\Bibitem{RagBalHer07}
\by Orlando Ragnisco, \'Angel Ballesteros, Francisco J.~Herranz, Fabio Musso
\paper Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
\jour SIGMA
\yr 2007
\vol 3
\papernumber 026
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma152}
\crossref{https://doi.org/10.3842/SIGMA.2007.026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280352}
\zmath{https://zbmath.org/?q=an:1138.37039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236278}
Linking options:
  • https://www.mathnet.ru/eng/sigma152
  • https://www.mathnet.ru/eng/sigma/v3/p26
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :37
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024