|
This article is cited in 2 scientific papers (total in 2 papers)
Half-Spin Tautological Relations and Faber's Proportionalities of Kappa Classes
Elba Garcia-Faildea, Reinier Kramerb, Danilo Lewańskib, Sergey Shadrinc a Institute de Physique Théorique, CEA Paris-Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
b Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
c Korteweg-de Vries Instituut voor Wiskunde, Universiteit van Amsterdam,
Postbus 94248, 1090GE Amsterdam, The Netherlands
Abstract:
We employ the $1/2$-spin tautological relations to provide a particular combinatorial identity. We show that this identity is a statement equivalent to Faber's formula for proportionalities of kappa-classes on $\mathcal{M}_g$, $g\geq 2$. We then prove several cases of the combinatorial identity, providing a new proof of Faber's formula for those cases.
Keywords:
tautological ring, tautological relations, moduli spaces of curves, Faber intersection number conjecture, odd-even binomial coefficients.
Received: June 19, 2019; in final form October 14, 2019; Published online October 18, 2019
Citation:
Elba Garcia-Failde, Reinier Kramer, Danilo Lewański, Sergey Shadrin, “Half-Spin Tautological Relations and Faber's Proportionalities of Kappa Classes”, SIGMA, 15 (2019), 080, 27 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1516 https://www.mathnet.ru/eng/sigma/v15/p80
|
Statistics & downloads: |
Abstract page: | 173 | Full-text PDF : | 36 | References: | 13 |
|