Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 078, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.078
(Mi sigma1514)
 

The Transition Function of $G_2$ over $S^6$

Ádám Gyenge

Mathematical Institute, University of Oxford, UK
References:
Abstract: We obtain explicit formulas for the trivialization functions of the ${\rm SU}(3)$ principal bundle $G_2 \to S^6$ over two affine charts. We also calculate the explicit transition function of this fibration over the equator of the six-sphere. In this way we obtain a new proof of the known fact that this fibration corresponds to a generator of $\pi_{5}({\rm SU}(3))$.
Keywords: $G_2$, six-sphere, octonions, fibration, transition function.
Received: May 23, 2019; in final form September 26, 2019; Published online October 9, 2019
Bibliographic databases:
Document Type: Article
MSC: 57S15, 55R10, 55R25
Language: English
Citation: Ádám Gyenge, “The Transition Function of $G_2$ over $S^6$”, SIGMA, 15 (2019), 078, 16 pp.
Citation in format AMSBIB
\Bibitem{Gye19}
\by \'Ad\'am~Gyenge
\paper The Transition Function of $G_2$ over $S^6$
\jour SIGMA
\yr 2019
\vol 15
\papernumber 078
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma1514}
\crossref{https://doi.org/10.3842/SIGMA.2019.078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000489339900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073532835}
Linking options:
  • https://www.mathnet.ru/eng/sigma1514
  • https://www.mathnet.ru/eng/sigma/v15/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :34
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024