Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 076, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.076
(Mi sigma1512)
 

This article is cited in 6 scientific papers (total in 6 papers)

Momentum Sections in Hamiltonian Mechanics and Sigma Models

Noriaki Ikeda

Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
Full-text PDF (405 kB) Citations (6)
References:
Abstract: We show a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauged sigma models on higher-dimensional manifolds.
Keywords: symplectic geometry, Lie algebroid, Hamiltonian mechanics, nonlinear sigma model.
Received: May 24, 2019; in final form September 29, 2019; Published online October 3, 2019
Bibliographic databases:
Document Type: Article
MSC: 53D20, 70H33, 70S05
Language: English
Citation: Noriaki Ikeda, “Momentum Sections in Hamiltonian Mechanics and Sigma Models”, SIGMA, 15 (2019), 076, 16 pp.
Citation in format AMSBIB
\Bibitem{Ike19}
\by Noriaki~Ikeda
\paper Momentum Sections in Hamiltonian Mechanics and Sigma Models
\jour SIGMA
\yr 2019
\vol 15
\papernumber 076
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma1512}
\crossref{https://doi.org/10.3842/SIGMA.2019.076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000489339800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073518087}
Linking options:
  • https://www.mathnet.ru/eng/sigma1512
  • https://www.mathnet.ru/eng/sigma/v15/p76
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :40
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024