Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 074, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.074
(Mi sigma1510)
 

This article is cited in 6 scientific papers (total in 6 papers)

Combinatorial Expressions for the Tau Functions of $q$-Painlevé V and III Equations

Yuya Matsuhira, Hajime Nagoya

School of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
Full-text PDF (414 kB) Citations (6)
References:
Abstract: We derive series representations for the tau functions of the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations, as degenerations of the tau functions of the $q$-Painlevé VI equation in [Jimbo M., Nagoya H., Sakai H., J. Integrable Syst. 2 (2017), xyx009, 27 pages]. Our tau functions are expressed in terms of $q$-Nekrasov functions. Thus, our series representations for the tau functions have explicit combinatorial structures. We show that general solutions to the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations are written by our tau functions. We also prove that our tau functions for the $q$-Painlevé $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations satisfy the three-term bilinear equations for them.
Keywords: $q$-Painlevé equations, tau functions, $q$-Nekrasov functions, bilinear equations.
Funding agency Grant number
Japan Society for the Promotion of Science JP15K17560
This work is partially supported by JSPS KAKENHI Grant Number JP15K17560.
Received: November 24, 2018; in final form September 13, 2019; Published online September 23, 2019
Bibliographic databases:
Document Type: Article
MSC: 39A13, 33E17, 05A30
Language: English
Citation: Yuya Matsuhira, Hajime Nagoya, “Combinatorial Expressions for the Tau Functions of $q$-Painlevé V and III Equations”, SIGMA, 15 (2019), 074, 17 pp.
Citation in format AMSBIB
\Bibitem{MatNag19}
\by Yuya~Matsuhira, Hajime~Nagoya
\paper Combinatorial Expressions for the Tau Functions of $q$-Painlev\'e V and III Equations
\jour SIGMA
\yr 2019
\vol 15
\papernumber 074
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1510}
\crossref{https://doi.org/10.3842/SIGMA.2019.074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000489339400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073413742}
Linking options:
  • https://www.mathnet.ru/eng/sigma1510
  • https://www.mathnet.ru/eng/sigma/v15/p74
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024