Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 024, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.024
(Mi sigma150)
 

This article is cited in 1 scientific paper (total in 1 paper)

A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold

Willy Sarlet

Department of Mathematical Physics and Astronomy, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
Full-text PDF (182 kB) Citations (1)
References:
Abstract: We review properties of so-called special conformal Killing tensors on a Riemannian manifold $(Q,g)$ and the way they give rise to a Poisson–Nijenhuis structure on the tangent bundle $TQ$. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes from a regular Lagrangian function $E$, homogeneous of degree two in the fibre coordinates on $TQ$. It is shown that when a symmetric type (1,1) tensor field $K$ along the tangent bundle projection $\tau\colon TQ\rightarrow Q$ satisfies a differential condition which is similar to the defining relation of special conformal Killing tensors, there exists a direct recursive scheme again for first integrals of the geodesic spray. Involutivity of such integrals, unfortunately, remains an open problem.
Keywords: special conformal Killing tensors; Finsler spaces.
Received: October 30, 2006; in final form January 17, 2007; Published online February 13, 2007
Bibliographic databases:
Document Type: Article
MSC: 37J35; 53C60; 70H06
Language: English
Citation: Willy Sarlet, “A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold”, SIGMA, 3 (2007), 024, 9 pp.
Citation in format AMSBIB
\Bibitem{Sar07}
\by Willy Sarlet
\paper A~Recursive Scheme of First Integrals of the Geodesic Flow of a~Finsler Manifold
\jour SIGMA
\yr 2007
\vol 3
\papernumber 024
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma150}
\crossref{https://doi.org/10.3842/SIGMA.2007.024}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280350}
\zmath{https://zbmath.org/?q=an:1138.53064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200024}
Linking options:
  • https://www.mathnet.ru/eng/sigma150
  • https://www.mathnet.ru/eng/sigma/v3/p24
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :45
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024