Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 023, 83 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.023
(Mi sigma149)
 

This article is cited in 56 scientific papers (total in 56 papers)

Antisymmetric Orbit Functions

Anatoliy Klimyka, Jiri Paterab

a Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna Str., Kyiv 03143, Ukraine
b Centre de Recherches Mathématiques, Université de Montréal, C.P.6128-Centre ville, Montréal, H3C3J7, Québec, Canada
References:
Abstract: In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter–Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform). Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.
Keywords: antisymmetric orbit functions; signed orbits; products of orbits; orbit function transform; finite orbit function transform; finite Fourier transforms; finite cosine transforms; finite sine transforms; symmetric functions.
Received: December 25, 2006; Published online February 12, 2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: Anatoliy Klimyk, Jiri Patera, “Antisymmetric Orbit Functions”, SIGMA, 3 (2007), 023, 83 pp.
Citation in format AMSBIB
\Bibitem{KliPat07}
\by Anatoliy Klimyk, Jiri Patera
\paper Antisymmetric Orbit Functions
\jour SIGMA
\yr 2007
\vol 3
\papernumber 023
\totalpages 83
\mathnet{http://mi.mathnet.ru/sigma149}
\crossref{https://doi.org/10.3842/SIGMA.2007.023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280349}
\zmath{https://zbmath.org/?q=an:1138.33001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953494247}
Linking options:
  • https://www.mathnet.ru/eng/sigma149
  • https://www.mathnet.ru/eng/sigma/v3/p23
  • This publication is cited in the following 56 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :65
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024