Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 021, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.021
(Mi sigma147)
 

This article is cited in 7 scientific papers (total in 7 papers)

Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds

Claudia Chanu, Giovanni Rastelli

Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
Full-text PDF (339 kB) Citations (7)
References:
Abstract: Given a $n$-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton–Jacobi equation by means of the eigenvalues of $m\leq n$ Killing two-tensors. Moreover, from the analysis of the eigenvalues, information about the possible symmetries of the web foliations arises. Three cases are examined: the orthogonal separation, the general separation, including non-orthogonal and isotropic coordinates, and the conformal separation, where Killing tensors are replaced by conformal Killing tensors. The method is illustrated by several examples and an application to the $L$-systems is provided.
Keywords: variable separation; Hamilton–Jacobi equation; Killing tensors; (pseudo-) Riemannian manifolds.
Received: November 2, 2006; in final form January 16, 2007; Published online February 6, 2007
Bibliographic databases:
Document Type: Article
MSC: 70H20; 70G45
Language: English
Citation: Claudia Chanu, Giovanni Rastelli, “Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds”, SIGMA, 3 (2007), 021, 21 pp.
Citation in format AMSBIB
\Bibitem{ChaRas07}
\by Claudia Chanu, Giovanni Rastelli
\paper Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds
\jour SIGMA
\yr 2007
\vol 3
\papernumber 021
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma147}
\crossref{https://doi.org/10.3842/SIGMA.2007.021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280347}
\zmath{https://zbmath.org/?q=an:1156.70007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234594}
Linking options:
  • https://www.mathnet.ru/eng/sigma147
  • https://www.mathnet.ru/eng/sigma/v3/p21
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :47
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024