Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 020, 29 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.020
(Mi sigma146)
 

This article is cited in 2 scientific papers (total in 2 papers)

Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows

Henrik Aratyna, Johan van de Leurb

a Department of Physics, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607-7059, USA
b Mathematical Institute, University of Utrecht, P. O. Box 80010, 3508 TA Utrecht, The Netherlands
Full-text PDF (347 kB) Citations (2)
References:
Abstract: We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the $2n$-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for $n\times n$ matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato–Wilson relations. A reduction process leads to the AKNS, two-component Camassa–Holm and Cecotti–Vafa models and the formalism provides simple formulas for their solutions.
Keywords: Clifford algebra; tau-functions; Kac–Moody algebras; loop groups; Camassa–Holm equation; Cecotti–Vafa equations; AKNS hierarchy.
Received: October 11, 2006; in final form January 9, 2007; Published online February 6, 2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: Henrik Aratyn, Johan van de Leur, “Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows”, SIGMA, 3 (2007), 020, 29 pp.
Citation in format AMSBIB
\Bibitem{AraVan07}
\by Henrik Aratyn, Johan van de Leur
\paper Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
\jour SIGMA
\yr 2007
\vol 3
\papernumber 020
\totalpages 29
\mathnet{http://mi.mathnet.ru/sigma146}
\crossref{https://doi.org/10.3842/SIGMA.2007.020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280346}
\zmath{https://zbmath.org/?q=an:05241533}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234730}
Linking options:
  • https://www.mathnet.ru/eng/sigma146
  • https://www.mathnet.ru/eng/sigma/v3/p20
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :57
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024