Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 022, 8 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.022
(Mi sigma1458)
 

On a Yang–Mills Type Functional

Cătălin Gherghe

University of Bucharest, Faculty of Mathematics and Computer Science, Academiei 14, Bucharest, Romania
References:
Abstract: We study a functional that derives from the classical Yang–Mills functional and Born–Infeld theory. We establish its first variation formula and prove the existence of critical points. We also obtain the second variation formula.
Keywords: curvature; vector bundle; Yang–Mills connections; variations.
Funding agency Grant number
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii, Romania PN-III-P4-ID-PCE-2016-00
This work is partially supported by a Grant of Ministry of Research and Innovation, CNCS - UEFISCDI, Project Number PN-III-P4-ID-PCE-2016-0065, within PNCDI III.
Received: November 13, 2018; in final form February 27, 2019; Published online March 21, 2019
Bibliographic databases:
Document Type: Article
MSC: 58E15; 81T13; 53C07
Language: English
Citation: Cătălin Gherghe, “On a Yang–Mills Type Functional”, SIGMA, 15 (2019), 022, 8 pp.
Citation in format AMSBIB
\Bibitem{Ghe19}
\by C{\u a}t{\u a}lin~Gherghe
\paper On a Yang--Mills Type Functional
\jour SIGMA
\yr 2019
\vol 15
\papernumber 022
\totalpages 8
\mathnet{http://mi.mathnet.ru/sigma1458}
\crossref{https://doi.org/10.3842/SIGMA.2019.022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464138700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068659305}
Linking options:
  • https://www.mathnet.ru/eng/sigma1458
  • https://www.mathnet.ru/eng/sigma/v15/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :44
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024