Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 006, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.006
(Mi sigma1442)
 

This article is cited in 8 scientific papers (total in 8 papers)

Open Problems for Painlevé Equations

Peter A. Clarkson

School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent, CT2 7FS, UK
Full-text PDF (481 kB) Citations (8)
References:
Abstract: In this paper some open problems for Painlevé equations are discussed. In particular the following open problems are described: (i) the Painlevé equivalence problem; (ii) notation for solutions of the Painlevé equations; (iii) numerical solution of Painlevé equations; and (iv) the classification of properties of Painlevé equations.
Keywords: Painlevé equations; open problems.
Received: January 18, 2019; Published online January 29, 2019
Bibliographic databases:
Document Type: Article
MSC: 33E17; 34M55
Language: English
Citation: Peter A. Clarkson, “Open Problems for Painlevé Equations”, SIGMA, 15 (2019), 006, 20 pp.
Citation in format AMSBIB
\Bibitem{Cla19}
\by Peter~A.~Clarkson
\paper Open Problems for Painlev\'e Equations
\jour SIGMA
\yr 2019
\vol 15
\papernumber 006
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma1442}
\crossref{https://doi.org/10.3842/SIGMA.2019.006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458967700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068659649}
Linking options:
  • https://www.mathnet.ru/eng/sigma1442
  • https://www.mathnet.ru/eng/sigma/v15/p6
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :78
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024