Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 018, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.018
(Mi sigma144)
 

Lattice Field Theory with the Sign Problem and the Maximum Entropy Method

Masahiro Imachia, Yasuhiko Shinnob, Hiroshi Yoneyamac

a Kashiidai, Higashi-ku, Fukuoka, 813-0014, Japan
b Takamatsu National College of Technology, Takamatsu 761-8058, Japan
c Department of Physics, Saga University, Saga, 840-8502, Japan
References:
Abstract: Although numerical simulation in lattice field theory is one of the most effective tools to study non-perturbative properties of field theories, it faces serious obstacles coming from the sign problem in some theories such as finite density QCD and lattice field theory with the $\theta$ term. We reconsider this problem from the point of view of the maximum entropy method.
Keywords: lattice field theory; sign problem; maximum entropy method.
Received: September 30, 2006; in final form January 19, 2007; Published online February 5, 2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: Masahiro Imachi, Yasuhiko Shinno, Hiroshi Yoneyama, “Lattice Field Theory with the Sign Problem and the Maximum Entropy Method”, SIGMA, 3 (2007), 018, 7 pp.
Citation in format AMSBIB
\Bibitem{ImaShiYon07}
\by Masahiro Imachi, Yasuhiko Shinno, Hiroshi Yoneyama
\paper Lattice Field Theory with the Sign Problem and the Maximum Entropy Method
\jour SIGMA
\yr 2007
\vol 3
\papernumber 018
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma144}
\crossref{https://doi.org/10.3842/SIGMA.2007.018}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280344}
\zmath{https://zbmath.org/?q=an:1135.82007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889235668}
Linking options:
  • https://www.mathnet.ru/eng/sigma144
  • https://www.mathnet.ru/eng/sigma/v3/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :43
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024