Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 002, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.002
(Mi sigma1438)
 

This article is cited in 2 scientific papers (total in 2 papers)

Coadjoint Orbits of Lie Algebras and Cartan Class

Michel Gozea, Elisabeth Remmb

a Ramm Algebra Center, 4 rue de Cluny, F-68800 Rammersmatt, France
b Université de Haute-Alsace, IRIMAS EA 7499, Département de Mathématiques, F-68100 Mulhouse, France
Full-text PDF (404 kB) Citations (2)
References:
Abstract: We study the coadjoint orbits of a Lie algebra in terms of Cartan class. In fact, the tangent space to a coadjoint orbit $\mathcal{O}(\alpha)$ at the point $\alpha$ corresponds to the characteristic space associated to the left invariant form $\alpha$ and its dimension is the even part of the Cartan class of $\alpha$. We apply this remark to determine Lie algebras such that all the nontrivial orbits (nonreduced to a point) have the same dimension, in particular when this dimension is $2$ or $4$. We determine also the Lie algebras of dimension $2n$ or $2n+1$ having an orbit of dimension $2n$.
Keywords: Lie algebras; coadjoint representation; contact forms; Frobenius Lie algebras; Cartan class.
Received: September 13, 2018; in final form December 31, 2018; Published online January 9, 2019
Bibliographic databases:
Document Type: Article
Language: English
Citation: Michel Goze, Elisabeth Remm, “Coadjoint Orbits of Lie Algebras and Cartan Class”, SIGMA, 15 (2019), 002, 20 pp.
Citation in format AMSBIB
\Bibitem{GozRem19}
\by Michel~Goze, Elisabeth~Remm
\paper Coadjoint Orbits of Lie Algebras and Cartan Class
\jour SIGMA
\yr 2019
\vol 15
\papernumber 002
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma1438}
\crossref{https://doi.org/10.3842/SIGMA.2019.002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000455214300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068711567}
Linking options:
  • https://www.mathnet.ru/eng/sigma1438
  • https://www.mathnet.ru/eng/sigma/v15/p2
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :56
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024