Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 001, 25 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.001
(Mi sigma1437)
 

This article is cited in 1 scientific paper (total in 1 paper)

Aspects of Calabi–Yau Integrable and Hitchin Systems

Florian Beck

FB Mathematik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Full-text PDF (565 kB) Citations (1)
References:
Abstract: In the present notes we explain the relationship between Calabi–Yau integrable systems and Hitchin systems based on work by Diaconescu–Donagi–Pantev and the author. Besides a review of these integrable systems, we highlight related topics, for example variations of Hodge structures, cameral curves and Slodowy slices, along the way.
Keywords: complex integrable systems; Hitchin systems; variations of Hodge structures; Calabi–Yau threefolds.
Funding agency Grant number
National Science Foundation DMS 1749013
Deutsche Forschungsgemeinschaft AL 1407/2-1
This work is financially supported by the NSF grant “NSF CAREER Award DMS 1749013”, the Simons Center for Geometry and Physics and the DFG Emmy-Noether grant on “Building blocks of physical theories from the geometry of quantization and BPS states”, number AL 1407/2-1.
Received: September 25, 2018; in final form December 19, 2018; Published online January 1, 2019
Bibliographic databases:
Document Type: Article
MSC: 14H70; 14D07; 14J32
Language: English
Citation: Florian Beck, “Aspects of Calabi–Yau Integrable and Hitchin Systems”, SIGMA, 15 (2019), 001, 25 pp.
Citation in format AMSBIB
\Bibitem{Bec19}
\by Florian~Beck
\paper Aspects of Calabi--Yau Integrable and Hitchin Systems
\jour SIGMA
\yr 2019
\vol 15
\papernumber 001
\totalpages 25
\mathnet{http://mi.mathnet.ru/sigma1437}
\crossref{https://doi.org/10.3842/SIGMA.2019.001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000455214100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068648058}
Linking options:
  • https://www.mathnet.ru/eng/sigma1437
  • https://www.mathnet.ru/eng/sigma/v15/p1
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:581
    Full-text PDF :63
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024