Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 015, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.015
(Mi sigma141)
 

This article is cited in 12 scientific papers (total in 12 papers)

KP Trigonometric Solitons and an Adelic Flag Manifold

Luc Haine

Department of Mathematics, Université catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
References:
Abstract: We show that the trigonometric solitons of the KP hierarchy enjoy a differential-difference bispectral property, which becomes transparent when translated on two suitable spaces of pairs of matrices satisfying certain rank one conditions. The result can be seen as a non-self-dual illustration of Wilson's fundamental idea [Invent. Math. 133 (1998), 1–41] for understanding the (self-dual) bispectral property of the rational solutions of the KP hierarchy. It also gives a bispectral interpretation of a (dynamical) duality between the hyperbolic Calogero–Moser system and the rational Ruijsenaars–Schneider system, which was first observed by Ruijsenaars [Comm. Math. Phys. 115 (1988), 127–165].
Keywords: Calogero–Moser type systems; bispectral problems.
Received: November 22, 2006; in final form January 5, 2007; Published online January 27, 2007
Bibliographic databases:
Document Type: Article
MSC: 35Q53; 37K10
Language: English
Citation: Luc Haine, “KP Trigonometric Solitons and an Adelic Flag Manifold”, SIGMA, 3 (2007), 015, 15 pp.
Citation in format AMSBIB
\Bibitem{Hai07}
\by Luc Haine
\paper KP Trigonometric Solitons and an Adelic Flag Manifold
\jour SIGMA
\yr 2007
\vol 3
\papernumber 015
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma141}
\crossref{https://doi.org/10.3842/SIGMA.2007.015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280341}
\zmath{https://zbmath.org/?q=an:1175.35124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234790}
Linking options:
  • https://www.mathnet.ru/eng/sigma141
  • https://www.mathnet.ru/eng/sigma/v3/p15
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :70
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024