Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 104, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.104
(Mi sigma1403)
 

This article is cited in 2 scientific papers (total in 2 papers)

Drinfeld–Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials

Mattia Cafassoa, Ann du Crest de Villeneuvea, Di Yangbc

a LAREMA, Université d'Angers, 2 boulevard Lavoisier, Angers 49000, France
b Max Planck Institute for Mathematics, Vivatsgasse 7, Bonn 53111, Germany
c School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China
Full-text PDF (447 kB) Citations (2)
References:
Abstract: For a simple Lie algebra $\mathfrak{g}$ and an irreducible faithful representation $\pi$ of $\mathfrak{g}$, we introduce the Schur polynomials of $(\mathfrak{g},\pi)$-type. We then derive the Sato–Zhou type formula for tau functions of the Drinfeld–Sokolov (DS) hierarchy of $\mathfrak{g}$-type. Namely, we show that the tau functions are linear combinations of the Schur polynomials of $(\mathfrak{g},\pi)$-type with the coefficients being the Plücker coordinates. As an application, we provide a way of computing polynomial tau functions for the DS hierarchy. For $\mathfrak{g}$ of low rank, we give several examples of polynomial tau functions, and use them to detect bilinear equations for the DS hierarchy.
Keywords: Drinfeld–Sokolov hierarchy; tau function; generalized Schur polynomials.
Funding agency Grant number
Agence Nationale de la Recherche ANR-11-LABX-0020-01
EU Framework Programme for Research and Innovation H2020-MSCA-RISE-2017, Grant No. 778010
A.D. and M.C. thank the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environment. A.D. and M.C. acknowledge the support of the project IPaDEGAN (H2020-MSCA-RISE-2017), Grant No. 778010.
Received: April 28, 2018; in final form September 19, 2018; Published online September 27, 2018
Bibliographic databases:
Document Type: Article
MSC: 37K10; 17B80
Language: English
Citation: Mattia Cafasso, Ann du Crest de Villeneuve, Di Yang, “Drinfeld–Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials”, SIGMA, 14 (2018), 104, 17 pp.
Citation in format AMSBIB
\Bibitem{CafDu Yan18}
\by Mattia~Cafasso, Ann~du Crest de Villeneuve, Di~Yang
\paper Drinfeld--Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials
\jour SIGMA
\yr 2018
\vol 14
\papernumber 104
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1403}
\crossref{https://doi.org/10.3842/SIGMA.2018.104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000446987900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055046414}
Linking options:
  • https://www.mathnet.ru/eng/sigma1403
  • https://www.mathnet.ru/eng/sigma/v14/p104
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024