Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 102, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.102
(Mi sigma1401)
 

Hesse Pencils and 3-Torsion Structures

Ane S. I. Anema, Jaap Top, Anne Tuijp

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands
References:
Abstract: This paper intends to focus on the universal property of this Hesse pencil and of its twists. The main goal is to do this as explicit and elementary as possible, and moreover to do it in such a way that it works in every characteristic different from three.
Keywords: Hesse pencil; Galois representation; torsion points; elliptic curves.
Received: May 8, 2018; in final form September 18, 2018; Published online September 21, 2018
Bibliographic databases:
Document Type: Article
MSC: 14D10; 14G99
Language: English
Citation: Ane S. I. Anema, Jaap Top, Anne Tuijp, “Hesse Pencils and 3-Torsion Structures”, SIGMA, 14 (2018), 102, 13 pp.
Citation in format AMSBIB
\Bibitem{AneTopTui18}
\by Ane~S.~I.~Anema, Jaap~Top, Anne~Tuijp
\paper Hesse Pencils and 3-Torsion Structures
\jour SIGMA
\yr 2018
\vol 14
\papernumber 102
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma1401}
\crossref{https://doi.org/10.3842/SIGMA.2018.102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000445496400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055052956}
Linking options:
  • https://www.mathnet.ru/eng/sigma1401
  • https://www.mathnet.ru/eng/sigma/v14/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :37
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024