Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 101, 33 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.101
(Mi sigma1400)
 

This article is cited in 2 scientific papers (total in 2 papers)

Macdonald Polynomials of Type $\boldsymbol{C_n}$ with One-Column Diagrams and Deformed Catalan Numbers

Ayumu Hoshinoa, Jun'ichi Shiraishib

a Hiroshima Institute of Technology, 2-1-1 Miyake, Hiroshima 731-5193, Japan
b Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914, Japan
Full-text PDF (598 kB) Citations (2)
References:
Abstract: We present an explicit formula for the transition matrix $\mathcal{C}$ from the type $C_n$ degeneration of the Koornwinder polynomials $P_{(1^r)}(x\,|\,a,-a,c,-c\,|\,q,t)$ with one column diagrams, to the type $C_n$ monomial symmetric polynomials $m_{(1^{r})}(x)$. The entries of the matrix $\mathcal{C}$ enjoy a set of three term recursion relations, which can be regarded as a $(a,c,t)$-deformation of the one for the Catalan triangle or ballot numbers. Some transition matrices are studied associated with the type $(C_n,C_n)$ Macdonald polynomials $P^{(C_n,C_n)}_{(1^r)}(x\,|\,b;q,t)= P_{(1^r)}\big(x\,|\,b^{1/2},-b^{1/2},q^{1/2}b^{1/2},-q^{1/2}b^{1/2}\,|\,q,t\big)$. It is also shown that the $q$-ballot numbers appear as the Kostka polynomials, namely in the transition matrix from the Schur polynomials $P^{(C_n,C_n)}_{(1^r)}(x\,|\,q;q,q)$ to the Hall–Littlewood polynomials $P^{(C_n,C_n)}_{(1^r)}(x\,|\,t;0,t)$.
Keywords: Koornwinder polynomial; Catalan number.
Funding agency Grant number
Japan Society for the Promotion of Science 16K05186
15K04808
Research of A.H. is supported by JSPS KAKENHI (Grant Number 16K05186). Research of J.S. is supported by JSPS KAKENHI (Grant Numbers 15K04808 and 16K05186).
Received: January 31, 2018; in final form September 11, 2018; Published online September 20, 2018
Bibliographic databases:
Document Type: Article
MSC: 33D52; 33D45
Language: English
Citation: Ayumu Hoshino, Jun'ichi Shiraishi, “Macdonald Polynomials of Type $\boldsymbol{C_n}$ with One-Column Diagrams and Deformed Catalan Numbers”, SIGMA, 14 (2018), 101, 33 pp.
Citation in format AMSBIB
\Bibitem{HosShi18}
\by Ayumu~Hoshino, Jun'ichi~Shiraishi
\paper Macdonald Polynomials of Type $\boldsymbol{C_n}$ with One-Column Diagrams and Deformed Catalan Numbers
\jour SIGMA
\yr 2018
\vol 14
\papernumber 101
\totalpages 33
\mathnet{http://mi.mathnet.ru/sigma1400}
\crossref{https://doi.org/10.3842/SIGMA.2018.101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000445496000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055034903}
Linking options:
  • https://www.mathnet.ru/eng/sigma1400
  • https://www.mathnet.ru/eng/sigma/v14/p101
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:139
    Full-text PDF :35
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024